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ISSUES IN THE DESIGN AND OPTIMIZATION OF
HEALTH MANAGEMENT SYSTEMS
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Abstract: The design of a health management system is presented as a decision problem.
The decision space is affected by the choice of a particular health management system
design and an employed maintenance policy. To the 1 St order, the evaluation objectives
consist of the conflicting goals of minimizing purchase costs, minimizing operating costs,
and maximizing availability. In order to assist and even automate the decision process,
data and computational tools for calculating the objectives are needed. While calculating
purchase costs is straightforward, determining operating costs and availability is not.
Parameters such as failure rate, criticality, component replacement cost due to unplanned
and planned maintenance, and average downtime for repair are examples of data needed
to determine the operating costs and availability. These types of data are not part of
traditional product models. Some of the data is partially contained in the traditional
FMIECA, but much of it is not. This shortcoming is the motivation for tools to assist in
the design of health management systems, such as the FMECA++© tool being developed
by Impact Technologies and Penn State Applied Research Laboratory.

Key Words: Availability; CBM; evaluation metrics; FMECA; health management;
operating cost; optimization; purchase cost.

Introduction: It is well known that health management systems can increase the overall
reliability of the underlying system by providing early fault detection and diagnostic
localization. In the ultimate case, a CBM system would enable one to predict the
remaining useful life of critical components, and to isolate the root cause of failures after
the failure symptoms have been observed. If predictions can be made, replacement part
orders and repair actions can be optimally scheduled to reduce the overall operational and
maintenance-related costs, while minimizing downtime and therefore maximizing system
availability. These improvements in operating costs and availability are of course offset
by the increase in cost of acquiring and maintaining the health management system.

Thus, the choice of what health management system to use can be abstractly considered
as a decision problem, where the decision maker chooses a health management system
and an accompanying maintenance policy to satisfy the conflicting goals of minimizing
purchase costs, minimizing operating costs, and maximizing availability. Cast in this
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fashion, the tools and techniques of multi-objective optimization and multidisciplinary
design optimization can be used to find a "best" design [1].

In order to assist and even automate the decision process, data and computational tools
for calculating the objectives are needed. While calculating purchase costs is
straightforward, determining operating costs and availability is not. Parameters such as
failure rate, criticality, component replacement cost due to unplanned and planned
maintenance, and average downtime for repair are examples of data needed to determine
the operating costs and availability. Again, such data is partially contained in the
traditional FMECA, but much of it is not. Augmented models such as used in the
FMECA++© intrinsically capture the downstream effects of the failure modes, including
secondary effects as embodied in a hierarchical model. FMECA++0 is envisioned to be a
(graphical & tabular) representation of functional failure modes with hierarchically linked
effects and symptoms to provide a blueprint for the design of a health management
system. It extends a typical FMECA with information on precursor symptoms, sensor
observables, diagnostic/pro nostic processes and their associated metrics. The data
embodied in the FMECA++ can be combined with its associated methods and tools for
calculating operating costs and availability, and the problem can be cast as a multi-
objective optimization problem and solved using well-known methods.

The remainder of this paper first establishes the basic problem statement for casting the
choice of a health management system as a decision problem, choosing over multiple
objectives. Next various methods for optimizing with multiple objectives are presented.
The determination of an availability metric receives extra attention, as its calculation is
less straightforward in comparison to the other objectives. Finally, the requirements
imposed on a design environment in order to implement the problem structure developed
in this paper are presented.

Statement of the Decision Problem: In choosing a health management system, the
decision maker starts (by assumption) with a system to be monitored (S), and has the
conflicting objectives of minimizing purchase cost (PC) and operating cost (OC) while
maximizing availability (A). The "decision space" is the choice of health monitoring
suite to employ (HM), and the choice of accompanying maintenance policy (MP). The
prime dependencies of the objectives with regard to the decisions are as follows:

Purchase Cost = PC(S, HM)

Operating Cost = OC(S, MP, HM) (1)

Availability = A(S, MP, HM)
Note that in addition to the dependence on the system to be monitored, purchase cost is
shown as a function of the choice of health management system, and operating cost is
shown as a function of the maintenance policy and the heath management system.
Particularly in the case of operating costs, this is done to make explicit the dependency of
the operating cost on both the maintenance policy and the health management system.
The health management system will directly affect the operating costs to a small degree
through its own life cycle costs. It will also affect OC with the ability to impact the
required amount of maintenance and provide potentially large mishap cost avoidances.
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Multi-Objective Optimization: The health management choice presents a multi-
objective decision problem, where the objectives are conflicting. In this instance, a
significant tradeoff is in the up-front purchase cost of a health management system versus
the downstream savings in operating costs. An additional tradeoff is, given a health
management system, choosing a maintenance policy that will minimize the operating
costs versus choosing one to maximize the availability. Many methods are available for
finding "best" solutions for such problems [2]. Each method attempts to capture, in some
rational manner, the decision maker's preference. The methods discussed briefly here are
weighted sums, minimax, goal programming, and design by shopping, explained below.

The most basic methods are weighted sums methods, where a scalar measure of worth is
calculated by multiplying each of PC, OC and A by a weighting factor. Note that the
availability term is subtracted from the total, to account for its maximization vice the
other terms' minimization:

min WPC + w2OC - wA
HM,MP

3 (2)
where wi =1

The weighting parameters are an attempt to capture the preference of the decision maker
as to the relative importance of the terms. These can be generalized to quadratic and
higher systems with weighted sums:

min wiPCk + w 2OC
k 

- wAk
HMv,MP

3 (3)
where w =1, ke {1,2,3,...}

i=I

Another method is to apply the minimax criteria as follows:

min max[wPC+wOC-w 3A]
HM,MP wr

3 (4)
where w = I

i=1

The minimax criteria can be interpreted as "chose HM and IP so as to minimize the
worst possible choice of weights w." Use of the minimax criteria can be construed as an
attempt to guard against incorrectly capturing a user's preference, expressed in w.
However, designs chosen by the minimax criteria are usually considered as too
conservative.

Another method is known as pre-emptive goal programming. With this method, the
objectives are first ordered from most to least important. Then the optimization problem
is solved for the most important objective first, and only solving for the next objective if
the answer to the first problem is non-unique. So for example if the objectives are ordered
{PC, OC, A}, then the problem solved first is
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PC*= min PC(HM, MP) (5)

HMMP

If the solution for HM is not unique, then the next problem solved is

OC*= min OC(HM,MP).MKMP (6)
s.t. PC(IM,MP)=PC"

and so on until a unique solution is reached.

The final method presented, known as design by shopping, does not establish a global
objective at all [3]. Rather, the paretofrontier of the feasible results of PC, OC, and A is
presented to the user, and the user decides. The pareto frontier is the set of all designs that
are non-dominated by other designs. Assume that a choice of HM and MP result in a set
of values (PC, OC, Al that define a point in the performance space. This point is non-
dominated if an improvement in any one of the objectives can only be achieved by a
decrease in one or more of the others. A dominated design point is one where a feasible
design exists that is at least as good as the first point in all objectives, and better in at
least one. The diagram below, Figure 1, shows the pareto frontier in bold for the two-
dimensional case, holding purchase cost constant. Designs that are along the lower left
boundary are non-dominated, in that an improvement in one aspect is accompanied by a
decrement in another. Interior points are dominated, and it is reasonable to expect that a
decision maker would never choose one.

HM System
Solution Space

Optimum Design
(Pareto Frontier)

Operating Cost
Figure 1: Pareto Frontier

Many design optimization experts would now consider it a mistake to come up with some
single scalar objective that is a blend of PC, OC and A and that attempts to capture the
preference of the decision maker. In their opinion it is better to let the decision maker
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"shop" for the right mix by presenting designs from the pareto set, rather than trying to
capture the decision maker's preference, which experience has proven difficult.

Determining Purchasing and Operating Cost: Purchasing cost can be determined
using parametric cost estimating applications such as PRICE-E TM. Such tools have been
widely employed in the cost estimating of conceptual through detailed design [4]. The
primary inputs are weight, volume and complexity of the subsystems, the hierarchical
structure of the system, and the complexity of the assemblies. If the baseline costs are
known due to activity-based costing, then these numbers can be used. Additional data
needed to estimate purchasing costs relates to the actual purchase, e.g., the dates for
initiating purchases, buy rates, total amount purchased, and so on. The same tools can
also be used to develop approximations to operating costs, based on the design data
listed.

Determining availability: It is probably too hard to calculate availability in closed form
for a system that forms a complex reliability block diagram. Upper and lower bounds
might be calculated by making simplifying assumptions, such as choosing failure rate
statistics from a restrictive set of families, or assuming the reliability block diagram is all
series or parallel. But if models of the system are available, tools exist to simulate the
system and determine an availability metric. A choice is to use a Monte Carlo simulation,
with values for isolation, repair, and admin/logistics times for various components along
with failure statistics, and simulate the system over an interval to get an estimate of
availability.

Availability metric: Presented in this section is one approach to determining a measure
of availability. It is important to bear in mind that, if availability is to be an objective, its
computation must be such that the impact of the addition of HM is clear.

For a system that operates over some fixed interval, the availability can be determined by
the equation

inera] i 1  
T +peraTe (7)

T + TA + repair + TPM + Toperate

where over the interval, Tr. is the time spent isolating faults, Tdl is the admin and

logistics time associated with repair events, Tpr is the time to disassemble, repair or

replace, and reassemble during repair events, TM is the time spent doing preventive
maintenance, and Top,,., is the time operating [5]. All of the T's other than TpersIC must

have the caveat that they only count if they occurred when the system was supposed to be
available. So the additional constraint can be imposed

Trequired = Tiso + Tad) + Tepair + TpM + Toperate (8)
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where Tequ,,d is the time that the system is required to be operating, which may be only

eight hours per day, for example. In this case, all maintenance may be performed while
the system is not required to be available, ensuring 100% availability.

To gain a feel for how the addition of health management can affect the various
parameters, we consider below the results of adding a partially effective and a perfect
health management suite compared to no health monitoring [Table 1]. Reference [10]
discusses previously developed metrics to associate with a HM system design, and
reference [9] proposes how this could be applied to produce an operational impact on A
and OC. These metrics represent a way to propagate the effectiveness of specific HIM
sensors and algorithms and map them to an availability effect as is shown in Table 1. To
further simplify the problem of comparison, assume the available maintenance actions are
restricted to preventive maintenance (PM) and replacement (REP). Further assume that a
REP is either planned or unplanned.

Table 1: Comparison with degrees of Health Management

No HM Partially Effective HM Perfect HM
Unplanned T1pi,iTi,Td Tipi,T dl. Unplanned Unplanned replacements
replacement replacements reduced are totally eliminated

corresponding to HM
fault detection metrics

Planned T . T,,. Isolation time Tr.pair only. Isolation time
replacement is reduced appropriately is eliminated

by diagnostic accuracy
metric

Preventive TM T,, will be reduced, TM will be reduced to
maintenance based upon the composite provide predictive

effectiveness of the HIM maintenance on all
system to predict the critical systems
overall failure modes

Maintenance Policy: Complicating the decision problem greatly is the fact that the
choice of maintenance policy has a critical impact on the value of the T variables. They
can all be written as T = T(MP). For example, a HM system coupled with a maintenance
policy that reads "Replace only on failure" will show no benefits of a health management
system. In general, the choice of maintenance policy (MP) will have an impact on
availability equal or greater in scope to the choice of HM system. Restating the equation
for determining availability, (1)

A = A(S, HM, MP) (9)
If we are trying to find the HM system that gives us the best availability, we must solve
the optimization problem for maximum availability while including MP as a decision
variable.
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A* = max A(S, HM, MP) (10)
HM, MP

Casting as a search for the best HM and moving the optimization with regard to MP to an
inner loop, the problem gains a bi-level optimization structure.

H11 = argmax max A(SHMMP)

Notional Infrastructure for Supporting the Decision Process: Given the statement of
the decision problem above, the suite of computational tools and applications must next
be developed. One such structure for supporting the decision process is shown below, in
Figure 2.

Baseline system, user's preference structure

Decision Support & Optimization

S, HM S, HM, MP S, HM, MP

Purchase Operating Availability
Cost Estimator Cost Estimator Estimator

Figure 2: Decision Support Structure

At the top, the baseline system that is to be considered along with possibly some
preference structure is entered. At the bottom are three separate applications, each of
which analyzes a design concept to determine its value with respect to one of the three
objectives. In the middle is the optimization engine, which in effect automates the search
through the design space in order to find the "best" designs.

It is important to note that each of the three estimators require data about the system, both
the baseline system and the chosen health management system, to be passed down, but
that the constitution of the data differs from one estimator to another. The purchase cost
estimator needs sizes, weights, complexities, and other manufacturing cost-related data of
the system and its components. The availability estimator needs data about the
components of the system, such as failure statistics as a function of loading, and about the
constitution of the coupling of the components in the system, such as captured in a
reliability block diagram. Therefore, before any optimization can occur, the product must
be modeled in a fashion that can serve as input to the estimators.
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Optimization Methods: Once having posed the decision problem and developed the
appropriate data models to drive the estimators, the implementation of an optimization
algorithm can be considered. The choice of an optimization algorithm is constrained by a
number of aspects of the problem. First, the estimator inputs will likely contain a mix of
continuous, countable, and enumerated variables. This implies a smooth optimization
algorithm will not suffice for the overall problem, but may be applicable for sub-
problems. However, if the problem is cast such that the maintenance policy is solved for
in an inner loop and the health management choice is solved for in an outer loop, this
presents a bi-level optimization problem. Bi-level optimization problems are notoriously
difficult for gradient-based optimizers to work with, [6, 7].

Alternatives to the gradient-based optimization algorithms are the non-gradient methods
such as simulated annealing and genetic algorithms. Genetic algorithms have the added
benefit that they are conducive to exploring the pareto set of a design space, [8]. At each
iteration, a new set of proposed designs are created, and the non-dominated designs are
culled from the offspring. Eventually the genetic algorithm will develop a set of design
points that are reasonably expected to be along the pareto set. A drawback to all of the
non-gradient based methods is that they have no obvious stopping criteria, as does exist
in the gradient-based methods.

Future Work: Because of its potential impact, health management solutions should be
considered during the initial design of a system. However, current practice in system
design does not adequately support the consideration of such solutions. It would appear
that, because an initial system FMECA is performed during the design stage, it is a
perfect link to the critical overall system failure modes that a health management system
is designed to help mitigate. In fact, a process has been demonstrated that links this
traditional FMECA analysis with health management system design optimization based
on failure mode coverage and availability and life cycle cost analyses, [9]. But in order to
be able to truly evaluate the relative merits of different health management system
options, the systems must be modeled in a more extensive manner. New tools such as the
FMECA++0 are now being developed to address this shortfall, [9]. The methods
presented herein can be implemented in such tools for use in the optimization of the
system and the HM, thus providing the maximum benefit of HMvI through its impact on
the system design.
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